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ABSTRACT

Gaussian mixture model (GMM)-based speaker identifica-
tion systems have proved remarkably accurate for large pop-
ulations using reasonable lengths of high-quality test utter-
ances. Test utterances, however, aquired from cellular tele-
phones or over the Internet (VoIP) may have dropouts due
to packet loss. In our research, we have demonstrated that
for small packet sizes, these losses can result in degraded
accuracy of the speaker identification system. It is shown
that by training the GMMmodel with lossy speech packets,
corresponding to the loss rate experienced by the speaker to
be identified, significant performance improvement is ob-
tained. In order to avoid the prior estimation of the packet
loss rate experienced by the test subject, we propose an
algorithm to identify the user based on maximizing the a
posteriori probability over the GMM models of the users
trained with several packet loss rates. It is shown that the
proposed algorithm provides excellent identification perfor-
mance.

1. INTRODUCTION

The objective of a speaker identification algorithm is to
determine which voice sample from a set of known voice
samples best matches the characteristics of an unknown
input voice sample. This involves extraction of speaker-
dependent features from the known voice samples, model
building for each known sample, and eventual matching of
the features extracted from the unknown voice sample. Of
various speaker identification techniques [1], the Gaussian
mixture model (GMM)-based speaker identification algo-
rithm has shown to be remarkably successful in identifying
speakers from a large population. The GMM approach pro-
vides a probabilistic model where an implicit segmentation
of the speech into phonetic sound classes prior to speaker
model training takes place. It has been found [2] that the
performance of the GMM-based method is near 100% up to
a population size of 630 speakers using the TIMIT speech

database (clean speech) with about 24 seconds of training
and 6 seconds of test utterances. The performance degraded
significantly for telephone-quality speech and is near 60%
for a similar size population.

Recently there has been an interest in studying the per-
formance of speaker identification algorithms in the context
of mobile wireless channels. It is well known that in or-
der to achieve high transmission efficiency, speech signals
in such systems undergo speech coders and decoders which
modify the original voice signal. In addition, the uncertain
wireless channel can cause data packet loss during deep fad-
ing periods. The effect of GSM (Global System for Mobile
Communication) coders on speaker recognition has been in-
vestigated in [3]. It has been shown that the usage of GSM
coding significantly degrades performance. By extracting
features directly from the encoded bit stream, the work in
[3] is able to improve the performance of the system. How-
ever, to our knowledge the effects of packet loss due to the
mobile wireless channel have not been investigated.

In this paper, we consider the problem of speaker iden-
tification in the presence of packet losses. This study is di-
rectly relevant for wireless channels and the VoIP environ-
ments. Since our focus is to identify the effects of packet
loss due to fading in the wireless channel or due to a de-
lay/congestion problem in the VoIP network we do not in-
corporate speech coders and decoders in our model. Each
data packet contains a fixed number of speech samples and
the loss of a packet results in the loss of the speech sam-
ples contained in the packet. Our study shows that for small
packet sizes, these losses can result in degraded accuracy
of the speaker identification system. We next show that by
training the GMMmodel with lossy packets, corresponding
to the loss rate experienced by the speaker to be identified,
significant performance improvement is obtained. In order
to avoid the estimation of the packet loss rate, we propose
an algorithm to identify the user based on maximizing the
a posteriori probability over the GMM models of the users
trained with several packet loss rates. It is shown that the
proposed algorithm provides excellent identification perfor-



mance.

2. OVERVIEW OF THE GMM-BASED SPEAKER
IDENTIFICATION SYSTEM

Briefly, a speaker identification system works as follows.
Prior to speaker identification, the system must first be
trained, i.e. create a table associating each individual
speaker with a distinguishing set of parameters based on the
individual’s speech signal. Afterward, a new speech signal
from an unknown user is acquired and a parameter set is
determined. A comparison is made with the unknown indi-
vidual’s parameter set and the entries in the table in order to
determine a closest “match” and subsequent identification
of the speaker. In the following subsections, we provide
more details regarding the GMM-based speaker identifica-
tion system as reported in [2].

2.1. Speech Analysis and Feature Extraction

The first stage in either the training or identification stage
is to perform an analysis of the speech signal and extract
distinguishing features. Fig. 1 illustrates the steps involved
in the feature extraction [4]. First, silence must be removed
from the utterance, u(n) (samples assumed to be normal-
ized). In our implementation, we measured the signal en-
ergy in 3ms non-overlapping windows and compared to a
threshold set to 0.012 (found through experiment). If the
energy was below the threshold, we removed the 3ms seg-
ment (which is assumed to be silence) from the utterance.
Next the short-time Fourier transform (STFT), X(m, k) is
computed from the silence-removed, utterance x(n). The
STFTs (1024-point) are computed using 20ms Hamming-
windowed segments with 50% overlap. Magnitude-squared
data is computed from the STFT, i.e. spectrogram and a pre-
emphasis is optionally applied in order to boost the higher
frequencies. Next a 20-channel, mel-scale filterbank, shown
in Fig. 2 is applied in order to weight the spectrogram [4].
The filterbank is designed with triangular responses and the
first ten center frequencies are uniformly spaced over 1kHz
while the second ten center frequencies are logarithmically
spaced over the remaining 3kHz. The filters, Fl are normal-
ized according to their bandwidth. The log-energy, y(m, l)
of each channel is calculated and the DCT of the vector
is computed. The resulting feature vector is the 20 × 1
mel-cepstrum, Y (m) computed every 10ms. In our exper-
iments, we used 90s of speech for training and 15s for the
identification. The speech data is acquired from the YOHO
Speaker Verification corpus by concatenating available files
for each individual speaker [5].
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Fig. 1. Mel-scale cepstral feature analysis

2.2. GMM Description, ML Parameter Estimation and
Speaker Identification

The probability density function of the feature vector Y of
a given speaker is modeled as a Gaussian mixture given by

p(Y|λs) =
W∑

i=1

{
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(2π)Lσi,1σi,2 . . . σi,L

×

exp

(
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σ2
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)}
(1)

whereW is the number of mixture components, L is the fea-
ture vector length, wi is the weight of the i-th mixture com-
ponent, andmi,k and σi,k denote the mean and the variance
respectively of the k-th component of the feature vector cor-
responding to the i-th mixture component. The weights,
means and the variances are collectively represented by the
parameter λs for the s-th speaker. Thus each speaker s is
represented by a GMM and is referred to by his/her model
λs.
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Fig. 2. Mel-scale filter bank



Once the feature vectors have been extracted from
speech training data, the first step in the development of the
speaker identification algorithm is to extract the model pa-
rameter λ for that speaker. It is known that a maximum like-
lihood (ML) parameter estimation approach results in a dif-
ficult nonlinear optimization problem. Therefore, iterative
techniques, such as the expectation maximization (EM) al-
gorithm, have been employed that guarantee convergence to
local minima [2]. The EM algorithm begins with an initial
parameter estimate, and then iteratively improves upon the
previous estimates with new updated estimates. The itera-
tions continue until some convergence threshold is reached.

Once the GMM parameters of all the speakers in the
training set are obtained, the next step of identification be-
gins. In identification, it is typically assumed that all the S
speakers in the training set are equally likely. In that case,
it is well-known that the maximum a posteriori (MAP) de-
tection becomes the ML detection for the user estimate Ŝ
given by

Ŝ = arg max
1≤s≤S

T∏

i=1

p(Yi|λs) (2)

under the assumption that the observations are independent.
T is the number of training vectors.

3. SPEAKER IDENTIFICATION OVER CHANNELS
WITH PACKET LOSS

We first assume that during training, the speech utterances
are complete, i.e. no interruptions due to packet loss. There-
fore, only the test data are incomplete due to packet loss.
In order to simplify, we apply the packet loss model (de-
scribed below), to fixed-sized packets each assumed to have
a fixed number of speech samples. However, packets usu-
ally contain coded speech which would imply that the loss
of the packet would represent the loss of numerous speech
samples depending on the coding scheme and compression
ratio.

3.1. Packet Loss Model

The packet loss model used in our study is the well-known
Gilbert-Elliot channel [6]. This channel has two states:
good and bad. When the state is ‘good’, the transmitted
packet is received without any error, and during a ‘bad’ state
the packet is considered lost. This type of packet loss model
has been widely used both in the wireless communications
literature and in the internet traffic modeling area. In our
study, we simulate the samples of a Rayleigh fading chan-
nel using the Jakes model with the Doppler spectrum given
by

S(f) =
1

πfD

√
1− f2/f2

D

(3)

for |f | ≤ fD, where fD is called the Doppler frequency.
The power of the samples over the packet duration is cal-
culated and the channel is considered ‘good’ if the power is
above a certain threshold.

3.2. Results

Using the GMM-based speaker identification system de-
scribed in Section 2 together with test data subjected to
packet loss, we simulated speaker identification for various
packet sizes and different packet loss rates. The number
of Gaussian mixture components W = 10, and the feature
vector length is L = 19. Figure 3 illustrates consistently
good speaker identification rates (≈ 95%) for packet sizes
above 32 samples/packet even with packet loss rates of 40%.
However, with smaller packets (8 and 16 samples/packet),
the performance noticeably degrades. In the case of 8 sam-
ples/packet, the performance is 68% correct identification
with 20% packet loss and only 33% correct identification
with 40% packet loss. The small size packet losses directly
affect the components of the feature vectors changing their
statistics.
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Fig. 3. Speaker identification performance as a function of
packet size. Packet loss rates of 20% and 40% are used.

4. IMPROVING SPEAKER IDENTIFICATION
OVER LOSSY, PACKET CHANNELS

In this section, we propose to use a lossy packet training
approach for improving the speaker identification perfor-
mance in lossy channels. When the packet loss rate of the
unknown speaker is known or can be accurately estimated,
the same losses can be applied to training data for all S users
prior to identification thereby providing a better match be-
tween training and test data. As shown in Fig. 4, with lossy



test data (30% packet loss) but lossless training data (0%
packet loss), the recognition rate is 35%. However, with
the proposed method which instead uses lossy training data
(30% packet loss) the recognition rate improves to above
90%. However, when a large mismatch occurs between the
actual packet loss rate for test data and that applied to the
training data, performance will be degraded. In the figure,
the identification rate has decreased to 89% when a 50%
loss rate is used in the training data but a 30% loss rate ac-
tually occurs in the test data. It is observed from the figure
that the performance is relatively insensitive to small errors
in the loss rate estimation.
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Fig. 4. Performance of GMM-based speaker identification
when lossy packets (with different assumed loss rates) are
used for training. The unknown speaker has a packet loss
rate of 30%.

In order to avoid the estimation of the loss rate alto-
gether, we propose to use a set of GMM parameters for each
speaker’s training data with different packet loss rates ap-
plied. We exploit the relative insensitivity of small errors in
loss rate estimation, and choose M = 6 loss rates of 0%,
10%, 20%, 30%, 40%, and 50%. The algorithm then ob-
tains the MAP estimate over the set of loss models as

Ŝ = arg max
1≤k≤S,1≤l≤M

T∏

i=1

p(Yi|λs,l) (4)

where λs,l denotes the GMM parameters for speaker s un-
der the loss rate model l, 1 ≤ l ≤ M . It is observed from
Fig. 4 that the identification performance has improved to
95% without any explicit loss rate estimation of the chan-
nel.

In Figs. 5 and 6, we study the performance of the pro-
posed method for identification data of various lengths.
Both the figures show that identification performance in-
creases with the length of the data. Packets containing more

samples show better performance with small identification
data. As more data are used, the performance behavior be-
comes nearly similar. Figure 6 shows that in more lossy
channels, identification performance is poorer for smaller
identification data. The figure also shows results for pack-
ets with no losses. In our study, we have used a hard mea-
sure of speaker identification unlike a soft measure as in [2].
Therefore, ignoring minor variations, the 20% loss rate case
behaves similar to the no loss case. For larger identification
data, behavior for different loss rates becomes similar to the
no loss case.
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Fig. 5. Speaker identification performance as a function of
identification data length with packet length as the parame-
ter. The packet loss rate is 40%.
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Fig. 6. Speaker identification performance as a function of
identification data length with packet loss rate as the param-
eter. Each packet contains 16 samples.



5. CONCLUSIONS

In this paper we have demonstrated that when test utterances
are acquired over lossy, packet channels, speaker identifica-
tion rates quickly decrease as the packet size gets smaller
(approximately 8-16 speech samples/packet). An algorithm
for improving speaker identification in lossy channels is
proposed. The algorithm uses a set of GMMmodels for sev-
eral packet loss rate models for each known spkeaker, and
the best speaker match is identified over all the loss model
sets. It has been found that the proposed method results in
excellent identification performance.
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