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ABSTRACT
Accuracy in speaker recognition systems may degrade if
channel conditions during the training and testing stages are
significantly different. Such channels may include different
microphones, telephone and mobile handsets, speech coders,
and VoIP. Many compensation techniques have been pro-
posed which seek to minimize the channel mismatch condi-
tion thereby improving accuracy rates in these systems. More
recently, the acoustic channel and its effect on speaker iden-
tification (SI) have been investigated and it has been shown
that when using clean training signals and reverberated test
signals, a loss in accuracy results. In this paper, we im-
prove upon a proposed method to compensate for this acous-
tic channel mismatch by utilizing a more accurate room re-
verberation model during the training stage. This model al-
lows us to pre-distort (reverberate) clean training signals in
order to approximate the expected reverberation present in
test signals. By utilizing a set of reverberated training mod-
els for each speaker, SI accuracies can be improved.

1. INTRODUCTION

The objective of speaker identification (SI) is to determine
which voice sample from a set of known voice samples best
matches the characteristics of an unknown input voice sam-
ple [1]. SI is a two-stage procedure consisting of training
and testing. In the training stage shown in Fig. 1(a), speaker-
dependent feature vectors, xm are extracted from a train-
ing speech signal and a speaker model, λs is built for each
speaker’s feature set. In the testing stage shown in Fig. 1(b),
feature vectors xtest

m are extracted from a test signal (speaker
unknown) and are scored against all S speaker models and
the most likely speaker identity decided.
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Figure 1: (a) Training and (b) testing stages in SI.

In the feature extraction blocks in Fig. 1, L-dimensional
feature vectors are constructed using mel-frequency cepstral

coefficients (MFCCs) as elements. In the speaker model-
ing block of the training stage, a Gaussian Mixture Model
(GMM) is constructed and its parameters (weights, mean
vectors, and covariance matrices) are estimated using the Ex-
pectation Maximization (EM) algorithm [1]. After comput-
ing all speaker models, the system is trained and ready for
the test stage.

For the SI test stage, the likelihood computation block
in Fig. 1(b) scores test feature vectors from the unknown
speaker against all speaker models. Assuming equally-likely
speakers and independent feature vectors, the maximum like-
lihood (ML) (log-likelihood) detection for identification of
the unknown speaker is given by

ŝ = arg max
1≤s≤S

M′

∑
m=1

log p(xtest
m |λs) (1)

where M′ is the number of test feature vectors [1]. SI accu-
racy is computed as the number of correct identification tests
divided by the total number of tests.

Accuracy in SI systems is known to degrade if channel
conditions during the training and testing stages are signifi-
cantly different. Such channel mismatches may occur when
using different microphones or when different telephone,
mobile, GSM coders, or VoIP channels are used for train-
ing and testing [2], [3], [4], [5], [6]. In general, there are
at least two approaches one could take in dealing with the
non-ideal test environment: 1) inverse filter the test signal in
order to undo channel distortions or at least partially com-
pensate or 2) modify the training signal or speaker model in
order to minimize the mismatch with the test signal. Many
researchers have taken the first approach and compensated or
equalized the test speech signal in order to improve SI accu-
racy. Some of the channel compensation techniques include
Cepstral Mean Subtraction (CMS) [2], [7], [8], [5]; Relative
Spectral Transform (RASTA) [9]; Root MFCC (RMFCC)
[10]; and Running Spectrum Filtering (RSF) and Dynamic
Range Adjustment (DRA) [11], [12], [13].

The first approach has also been considered with far-field
microphones in SI applications [14]. In this work, the authors
consider several teleconferencing rooms where multiple, dis-
tant microphones are used to create multichannel training
signals. Speech recorded with distant microphones is prone
to reverberation and additive background noise. In their SI
system, the authors use traditional enhancement methods and
propose new methods for reverberation compensation and
feature warping of both training and test signals in order to
improve SI accuracy in the reverberant environment. For re-
verberation compensation, the authors model reverberation
as an additive noise and apply noise reduction techniques



like spectral subtraction followed by empirical estimation of
noise paramters in [14]. Three distant microphone databases
which differed in the microphone positioning, room charac-
teristics and speaking style were used. The authors used the
data from the multiple microphones to do multiple channel
combination experiments in order to compensate for the mis-
match and reported up to 87.1% relative improvement when
using the Distant Microphone database [14]. One drawback
with this work is the requirement of multiple training signals
acquired in reverberant environments.

In [6], the authors used the second approach for test sig-
nals acquired in lossy, packet channels (VoIP) but clean train-
ing signals. They found that SI accuracy can be significantly
improved when a packet loss model with a similar loss rate
is applied to the training data. Because it is unrealistic to
know packet loss rates in advance, the authors applied a set
of packet loss models each with different loss rates to the
training signals thereby creating multiple models for each
speaker. The log-likelihood detection is the same as in (1)
except that now scoring is computed over all speakers’ mul-
tiple models. The authors demonstrated that SI accuracies
can improved from 30–60% baseline levels (clean training
signals, VoIP test signals) to over 95% (YOHO corpus) [6].
It is worth noting that a similar approach to multiple train-
ing models was proposed over a decade ago in order to ad-
dress the problem of intersession variability [15], [16]. In this
work, the authors assume the availability of multiple train-
ing signals for each speaker acquired in different sessions in
a variety of conditions and channels. Separate models (not
GMMs) are constructed for each speaker’s sessions [16].

In [17], the authors addressed the problem of reverberant
environment for speaker verification (SV). They proposed
to combat the effects of test speech acquired in a reverber-
ant environment by training with reverberant speech origi-
nating from rooms different than those of the test speech.
In this work, each speaker generates several training mod-
els using an auto-regressive (AR) vector method. The au-
thors build reverberation classification models (RCMs) for
a random speaker and use the Itakura distance between the
RCM and the test utterance to find the training room that
best matches the test reverberation; speaker models using this
training room are then used in the test stage. The authors re-
port a classification accuracy of 96.5% on KING corpus.

In [18], the second approach (modify the training sig-
nal in order to minimize the mismatch with the test signal)
was also investigated for test signals acquired in reverberated
rooms. Similar to the work in [6], a set of simulated rooms
similar to but not identical to the test room were used to gen-
erate reverberation filters. Each speaker’s clean training sig-
nal was filtered with the reverberation filters creating a set
of reverberated training signals for each speaker. The train-
ing signals were then used to create a set of speaker models
for each speaker and the test signal was then scored against
all of the speakers’ multiple models. The advantage of this
approach over the one in [14] is that we avoid the problem
of having to acquire multiple training signals in reverberant
environments–ours requires only a clean training signal. Us-
ing this approach, the authors demonstrated that SI accura-
cies can improved by 20% over baseline levels (clean train-
ing signals, reverberated test signals) [18]. In generating the
impulse responses for the simulated training rooms, the im-
age method was used [19]. Unfortunately, with this method,
phase is not properly considered in that all the reflections are

assumed to arrive in-phase to the microphone which is not
the case in real rooms. In addition, the reflection coefficients
used in the image method for generating the training rooms
were in a narrow range which does not allow for investigation
of higher levels of reverberation [18].

In this paper, we extend the previous work and utilize a
more advanced algorithm to generate training room impulse
responses which does properly consider phase and the echo
arrival time. We also consider a wider range of reflection co-
efficients in our simulations and measure the reverberation
time Rt , to better understand its impact on SI accuracy. Fi-
nally, we use a real test room impulse response in order to
validate the method. The paper is organized as follows. In
Section 2, we describe the method whereby training signals
are first filtered with a family of reverberation filters prior to
construction of speaker models. In Section 3, we describe the
experimental evaluation and provide results using the TIMIT
corpus and in Section 4 we conclude the article.

2. REVERBERATION FILTERING OF TRAINING
SIGNALS

In the SI problem under investigation, we assume access to
clean training signals but have acquired the test signals in a
reverberant environment. Such a mismatch between train-
ing and test signals can easily occur in audio surveillance
applications where higher-quality training signals have been
acquired under controlled conditions or covertly but the test
signals have been acquired in an environment which cannot
be controlled. Furthermore, we do not assume knowledge of
the impulse response of the test room but only general infor-
mation such as its approximate size and approximate posi-
tioning of the speaker and microphone. We use this general
information to artificially create reverberation filters which
approximate the expected test room impulse response. The
reverberation filters or “training rooms” are applied to the
clean training signals as in Fig. 2. Feature extraction and
speaker modeling proceed as usual except that each speaker
will now have a set of speaker models (one for each room).
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Figure 2: Training stage where signals are filtered using im-
pulse responses of various training rooms.

Under the scenario in Fig. 2, the proposed SI test stage
is illustrated in Fig. 3 and shows that testing proceeds as
usual except that we now conduct likelihood calculations in
(1) over all speaker models

ŝ = arg max
1≤s≤S,1≤n≤N

M′

∑
m=1

log p(xtest
m |λs,n) (2)

where λs,n denotes the GMM parameters for speaker s using
training room n where N is the number of training rooms.



Although in our proposed approach we use multiple train-
ing models, we do not assume the availability of multiple
training sessions each acquired in a different training room to
generate these models as in [14]. Rather our multiple speaker
models in Fig. 2 arise from taking a single clean training sig-
nal and filtering it with a set of filters each approximating test
room acoustic conditions.
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Figure 3: Testing stage using multiple speaker models for
each speaker.

3. SIMULATIONS AND RESULTS

We conducted three sets of experiments using the first 100
speakers from the TIMIT corpus. We use a relatively sim-
ple GMM-based SI system in order to evaluate the proposed
method. Our SI system removes silence from the speech sig-
nals using voice activity detector and uses 29 dimensional
MFCC feature vectors computed every 25 ms with 10 ms
overlap. We use a 32 component GMM for speaker model-
ing. Using clean TIMIT training and testing signals, our SI
system has an accuracy of 100%.

Training room impulse responses were computed for a
fixed room size, three different source/microphone locations,
and several reflection coefficients using a room impulse re-
sponse generator [20]. In [20], the author uses the image
method described in [21] to find the room impulse response
and modifies it using [22] to simulate received echo arrival
time accurately. Each echo is then lowpass filtered using a
Hamming window so as to add phase to the impulse response
[22]. The parameters for the various rooms are detailed be-
low and based on the diagram in Fig. 4.

3.1 SI Accuracy for Clean Training Signals and Rever-
berant Test Signals
We first establish baseline results for an SI system which
uses clean training signals and reverberant test signals. For
the baseline case, no modification of the training signal or
test signal is made. To simulate test room reverberation,
we filtered TIMIT test signals using a test room impulse re-
sponse. The various test room impulse responses were gener-
ated using [20] for a room measuring 3.35×4.27×3.5 (m),
a three different source/microphone locations (see Table 1),
and a range of reflection coefficients. Test room reverbera-
tion times were calculated to be range from Rt = 44 ms for
r = 0.3 to Rt = 155 ms for r = 0.7 which are representative
of a typical small office with furnishings.

SI accuracy results for the simulation of SI using clean
training signals and reverberant test signals are shown in
Fig. 5. The results confirm that the geometry and acous-
tics of the test rooms can affect SI accuracy rates when
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Figure 4: Diagram of the room.

Table 1: Reverberant Test room parameters

Test Source Microphone
Room (xs, ys, zs) (xm, ym, zm)

1 (2.0,1.5,1.5) (1.0,3.5,1.5)
2 (0.95,1.25,1.0) (2.25,3.75,1.5)
3 (0.53,0.79,0.53) (2.99,3.80,2.13)

training signals are clean, i.e. channel mismatch. Two fac-
tors, source/microphone distance and reflection coefficient,
appear to degrade SI accuracy levels consistent with how
increases in these factors can increase reverberation levels.
The combination of these two factors is most predominant in
Room 3, which has the greatest source/microphone distance
(and highest Rt ) and also has the largest decrease in SI accu-
racy as the reflection coefficient increases. Room 2 has the
second greatest source/microphone distance and also has sig-
nificant decreases in SI accuracy as the reflection coefficient
increases.

3.2 SI Accuracy using Proposed Method with Synthetic
Test Room
In the second set of simulations, we evaluate the proposed
method using both reverberant training and test signals where
now the reverberant training signals are constructed by fil-
tering clean training signals with reverberation filters as in
Fig. 2. We constructed training room impulse responses
based on geometries similar, but not identical, to the test
rooms in order to approximate test room acoustics. Test
and training room parameters for each of the simulations are
listed in Tables 2–4 where we note that all training room sizes
are 3.7×4.7×3.8 (m) except Rooms 5 and 6 where the room
sizes were 4.0× 5.0× 3.3 (m) and the test room sizes are
3.35×4.27×3.5 (m). Clean TIMIT training signals were fil-
tered with the various training room impulse responses and
used to create a set of speaker models as in Fig. 2. Using
the reverberated test signal and speaker model families as in
Fig. 3, we measured SI accuracy.

SI accuracy results are given in the first three rows of Ta-
ble 5 where we include the baseline accuracy when speaker
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Figure 5: SI accuracy (clean training signals) versus reflec-
tion coefficient for test rooms. Baseline (no test room rever-
beration) accuracy is 100%.

models based on clean training signals are used. Our results
indicate that using the proposed method, we are able to sig-
nificantly increase SI accuracy rates compared to the base-
line case where speaker models based only on clean training
signals are used. The accuracy increases are approximately
13%.

Table 2: Simulation 1 testing and training room parameters

Room (xs, ys, zs) (xm, ym, zm) r
Test (0.75, 0.75, 0.9) (2.85, 2,75, 1.95) 0.5

Training 1 (1.05, 1.38, 1.1) (2.48, 4.13, 1.65) 0.4
Training 2 (1.05, 1.38, 1.1) (2.48, 4.13, 1.65) 0.6
Training 3 (1.5, 1.15, 0.95) (1.5, 3.5, 1.25) 0.4
Training 4 (1.5, 1.15, 0.95) (1.5, 3.5, 1.25) 0.6
Training 5 (0.95, 1.25, 1.0) (2.25, 3.75, 1.5) 0.4
Training 6 (0.95, 1.25, 1.0) (2.25, 3.75, 1.5) 0.6

Table 3: Simulation 2 testing and training room parameters

Room (xs, ys, zs) (xm, ym, zm) r
Test (0.95, 1.25, 1.0) (2.25, 3.75, 1.5) 0.5

Training 1 (2.0, 1.5, 1.5) (1.0, 3.5, 1.5) 0.4
Training 2 (2.0, 1.5, 1.5) (1.0, 3.5, 1.5) 0.6
Training 3 (1.5, 1.15, 0.95) (1.5, 3.5, 1.25) 0.4
Training 4 (1.5, 1.15, 0.95) (1.5, 3.5, 1.25) 0.6
Training 5 (0.75, 2.0, 0.9) (2.85, 2.75, 1.35) 0.4
Training 6 (0.75, 2.0, 0.9) (2.85, 2.75, 1.35) 0.6

3.3 SI Accuracy using Proposed Method with Real Test
Room
In the third set of experiments, we use test signals filtered
with an impulse response measured from an actual room.
The test room is a study lounge on the New Mexico State
University campus (Thomas and Brown, Room 102) and had

Table 4: Simulation 3 testing and training room parameters

Room (xs, ys, zs) (xm, ym, zm) r
Test (0.53, 0.79, 0.53) (2.99, 3.8, 2.13) 0.5

Training 1 (1.05, 1.38, 1.1) (2.48, 4.13, 1.65) 0.4
Training 2 (1.05, 1.38, 1.1) (2.48, 4.13, 1.65) 0.6
Training 3 (1.5, 1.15, 0.95) (1.5, 3.5, 1.25) 0.4
Training 4 (1.5, 1.15, 0.95) (1.5, 3.5, 1.25) 0.6
Training 5 (0.83, 2.2, 1.0) (3.14, 3.03, 2.15) 0.4
Training 6 (0.83, 2.2, 1.0) (3.14, 3.03, 2.15) 0.6

Table 5: SI accuracy using reverberated test signals with pro-
posed method.

Baseline Final
Accuracy Accuracy

Simulation 1 83% 97%
Simulation 2 83% 96%
Simulation 3 72% 84%
Actual Room 82% 94%

a carpeted floor, painted walls, some chairs and tables, a
couch and measures 10× 12.47× 2.8 (m). We measured
Rt = 1.5 s and the impulse response of the actual test room
is shown in Fig. 6. We used [20] to construct training room
impulse responses using dimensions and source/microphone
locations which approximate those of the test room–all train-
ing room sizes are 9.0×11.0×3.5 (m) except Rooms 5 and 6
where the room sizes were 11×13.7×4.0 (m). We used re-
flection coefficients, r = 0.6 or r = 0.8 since the actual value
from the test room was not known. The training rooms have
Rt = 0.26 s when r = 0.6 and Rt = 0.52 s when r = 0.8. Fi-
nally, source and microphone locations are given in Table 6.
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Figure 6: Impulse Response of the Actual Room.

Clean TIMIT training signals were filtered with the var-
ious training room impulse responses and used to create a
set of speaker models as in Fig. 2. Using the reverberated
test signal and speaker model families as in Fig. 3, we mea-



Table 6: Actual Room testing and training parameters

Room (xs, ys, zs) (xm, ym, zm) r
Office (6.10, 4.82, 1.01) (4.02, 6.74, 1.37) N/A

Training 1 (6.5, 5.5, 1.0) (3.5, 2.5, 1.5) 0.6
Training 2 (6.5, 5.5, 1.0) (3.5, 2.5, 1.5) 0.8
Training 3 (3.0, 6.5, 1.25) (8.0, 3.0, 1.25) 0.6
Training 4 (3.0, 6.5, 1.25) (8.0, 3.0, 1.25) 0.8
Training 5 (2.5, 7.5, 1.35) (9.5, 7.5, 1.75) 0.6
Training 6 (2.5, 7.5, 1.35) (9.5, 7.5, 1.75) 0.8

sured SI accuracy. The result is given on the last row of
Table 5 where we also include the baseline accuracy when
speaker models based on clean training signals are used. The
low baseline accuracy is likely due to the high reverbera-
tion time associated with the real test room. Using the pro-
posed method, we are able to increase SI accuracy when us-
ing reverberant test signals by 12% over baseline results. We
emphasize that this accuracy improvement does not require
costly acquisition of training signals in reverberant environ-
ments.

4. CONCLUSIONS

We have considered the impact of test room reverberation on
SI and found that accuracy can be degraded by as much as
30% over the baseline case where test signals are clean. We
have improved upon earlier work which proposed filtering
clean training signals with a set of reverberation filters de-
signed to approximate expected test room conditions. Our
improvements include the use of a more refined room im-
pulse generator for computing the training room impulse re-
sponses. The set of artificially reverberated training signals
leads to a set of speaker models for each speaker and test sig-
nals are scored using the models. In our simulations, we have
improved SI accuracy by 13% using simulated test rooms and
12% using an actual test room. Unlike prior work, these im-
provements are made without having to acquire actual train-
ing signals in reverberated environments.
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