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ABSTRACT

It is well known that the empirical mode decomposition algo-
rithm does not always return an appropriate decomposition due to
problems like mode mixing. In this paper, we consider the problem
of a component being split across several intrinsic mode functions
(IMFs). We propose the use of a hidden Markov model (HMM) to
track the dominant component across the set of IMFs returned by
EMD. We provide an example demonstrating the proposed tracking
using an acoustic recording where component splitting is present in
the decomposition and compare our method to two other possible
tracking approaches. We show that the proposed method provides
a compromise between smoothness and energy associated with the
tracked component.

Index Terms— Signal analysis, Empirical mode decomposi-
tion, Hidden Markov models

1. INTRODUCTION

In [1], Huang proposed the empirical mode decomposition (EMD)
and sifting algorithms to sequentially determine a set of intrinsic
mode functions (IMFs), {ϕk(t)}, where the definition of an IMF is
any signal with real part that satisfies two conditions: 1) in the whole
signal segment, the number of extrema and the number of zero cross-
ings must be either equal or differ at most by one, and 2) at any point
the mean value of the envelope, defined by the local maxima and
the envelope defined by the local minima, is zero. IMFs are useful
as signal components because they allow for a significant amount of
flexibility in the signal model. However, IMFs are not orthogonal to
each other and as a result, a decomposition into IMFs is not unique.
Due to this ambiguity, the decomposition returned by EMD does not
always capture the assumed/true underlying signal components as
expected. More specifically, “mode mixing” and “component split-
ting,” each of which will be further discussed in Section 2.1, may be
present in the decomposition.

In this work, we assume that the signal under analysis contains a
single dominant component which we wish to track across the IMFs
returned by EMD. We propose a method for tracking the dominant
component across the IMFs which utilizes a hidden Markov model
(HMM) framework. The remainder of this paper is organized as fol-
lows. In Section 2 we briefly review the EMD and sifting algorithms
as well as the mode mixing and component splitting problems. In
Section 3 we review the HMM with time-varying transition proba-
bilities. In Section 4 we describe our proposed approach. In Section
5 we provide simulations and results which illustrate the use of the
proposed method. Finally, in Section 6 we provide concluding re-
marks.

2. EMPIRICAL MODE DECOMPOSITION

The EMD algorithm proposed by Huang [1] repeatedly calls the sift-
ing algorithm, given in Algorithm 2. The purpose of the sifting algo-
rithm is to iteratively identify and remove the trend from the signal,
acting as a high pass filter. This process repeats to remove additional
IMFs from the signal if they exist. The resulting decomposition is
complete and sparse [1–3]. The sifting algorithm is an iterative way
of removing the asymmetry between the upper and lower envelopes
in order to transform the input r(t) into an IMF [4].

Since the original publication, many improvements to EMD
have been proposed to address computational issues and other issues
related to the signal decomposition. The ensemble empirical mode
decomposition (EEMD) [5] introduced ensemble averaging in order
to address the mode mixing problem via an additive noise and an
averaging of IMF estimates. The complete EEMD (CEEMD) was
proposed to address some of the undesirable features of EEMD by
averaging at the IMF level as each IMF is estimated rather than
averaging at the conclusion of EEMD [6]. The improved CEEMD
(ICEEMD) [7] was proposed to reduce the noise present in each
IMF estimate and to reduce the occurrence of spurious IMFs as was
observed with CEEMD. More recently, we proposed [8] additional
improvements to CEEMD which include 1) a modification to the
ensemble averaging which guarantees that the average IMF is a true
IMF [5] and 2) a change from the additive noise used in ensem-
ble averaging to a complimentary pair of narrowband tones which
we term “tone masking.” In this work, we utilize the decomposi-
tion algorithm proposed in [8]. For convenience, we have repeated
Algorithms 1 - 3, however for complete details see [8].

2.1. Mode Mixing and Component Splitting

One major problem in the EMD algorithm is mode mixing, which
is defined as a single IMF either consisting of components of dis-
parate scales or components of similar scale residing in the same
IMF [5]. Mode mixing is a consequence of signal intermittency, or
more specifically relative component intermittency. As a result, the
particular component(s) estimated by the sifting algorithm in a par-
ticular IMF at any instant may change as intermittent components
begin or end [9]. This is illustrated in Fig. 1(a), where in the top
part of the figure, we show components of disparate scales being in
the same IMF denoted by �, while in the center part of the figure
we show two components of similar scale in the same IMF denoted
by �. The ability of EMD to resolve two components considering
both the relative instantaneous amplitudes (IAs) and instantaneous
frequencies (IFs) of components, was examined and quantified by
Rilling [10].

One commonly used method of mitigating mode mixing is
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Fig. 1. In (a) and (b), the assumed components are indicated with and the first component or high frequency IMF, identified with the
sifting algorithm, is indicated within the frame. In (a), the mode mixing problem is apparent where we see components of disparate scales
being in the same IMF (indicated by �) and components of similar scale in the same IMF (indicated by �). In (b), adding noise and ensemble
averaging may assist in resolving mode mixing where components of disparate scales appear in the same IMF (�), however this may not help
a situation where components of similar scale appear in the same IMF (�) and additionally component splitting may be a problem (indicated
by �).

EEMD [5]. EEMD utilizes zero-mean white noise to perturb the
signal so a component may be extracted properly over an ensemble
average. As the illustration in Fig. 1(b) shows, noise can be used to
assist the sifting algorithm. Inserting noise with high enough power
gives the sifting algorithm something to track when the highest
frequency component is intermittent (indicated by � in Fig. 1(a)),
then vanishes in the ensemble average. Although injecting noise can
help to extract components properly, a carefully designed masking
signal can also be used [8]. However, the use of masking signals
may not help a situation where components of similar scale appear
in the same IMF (indicated by �). The use of masking signals often
results in a bandpass structured decomposition which may not have
the flexibility to extract a component which has significant variation
in frequency. This leads to the problem we term component splitting
and is illustrated in Fig. 1(b). Ideally the component of interest ( )
would be extracted as a single IMF. However, as is often the case,
the component of interest with significant frequency variation may
be “split” across several IMFs.

Algorithm 1 Decomposition and Demodulation [8]
1: procedure {ϕ̂k(t), âk(t), ω̂k(t)} = DecompDemod( x(t) )
2: initialize: x−1(t) = x(t), k = 0, βk is a SNR factor, ε2 is

an energy threshold, and I is the number of trials
3: while

∫
|x(t)|2 dt/

∫
|xk−1(t)|2 dt > ε2

and xk−1(t) is not monotonic do

4: ϕ̄k(t) =
1

2I

I∑
i=1

[
SIFT( xk−1(t) + v(i,k)(t) )

+ SIFT( xk−1(t)− v(i,k)(t) )
]

5: ϕ̂k(t) = SIFT( ϕ̄k(t) )
6: [âk(t), ω̂k(t)] = IMFdemod( ϕ̂k(t) )
7: xk(t) = xk−1(t)− ϕ̂k(t)
8: k ← k + 1
9: end while

10: ϕ̂k(t) = xk−1(t)
11: end procedure

Algorithm 2 Sifting Algorithm
1: procedure ϕ(t) = SIFT( r(t) )
2: while 1

NTs

∫ NTs

0
|ẽ(t)|2dt ≥ ε1 do

3: find all local maxima: up = r(tp), p = 1, 2, . . .
4: find all local minima: lq = r(tq), q = 1, 2, . . .
5: interpolate: u(t) = CublicSpline({tp, up})
6: interpolate: l(t) = CublicSpline({tq, lq})
7: e(t) = [u(t) + l(t)]/2
8: r(t)← r(t)− e(t)
9: end while

10: ϕ(t) = r(t)
11: end procedure

Algorithm 3 IMF demodulation
1: procedure [â(t), ω̂(t)] = IMFdemod( ϕ̂(t) )
2: â(t) = IAest( ϕ̂(t) )
3: ŝFM(t) = iterAMremoval( ϕ̂(t) )

4: σ̂FM(t) = −sgn
[
d

dt
ŝFM(t)

]√
12 − ŝ2FM(t)

5: Find {t0} such that σ̂FM(t0) = 0
6: For each t0, replace (σ̂FM(t0 − ε), σ̂FM(t0 + ε))

with interpolation

7: ω̂(t) =
d

dt
arg [ŝFM(t) + jσ̂FM(t)]

8: end procedure

3. HIDDEN MARKOV MODELS

HMMs provide a probabilistic approach for relating a sequence of
observations to a sequence of hidden classes or hidden states that
explain the observations [11,12]. In this section, we introduce math-
ematical notion and review important computational algorithms re-
lated to HMMs that are utilized in Section 4 to describe the proposed
component tracking.

Mathematically, the typical HMM consisting of K states Q =
{q1 q2 . . . qK} with observation sequences ON = [o1 o2 · · · oN ]



of length N may be specified by parameter set λ = {A, B, Π}
where

• A is a transition probability matrix where (A)ij = aij , 1 ≤
i ≤ K, 1 ≤ j ≤ K representing the probability of moving
from state i to state j

• B a matrix of observation likelihoods where (B)kn =
bk(on), 1 ≤ k ≤ K, 1 ≤ n ≤ N is the likelihood of
observation on being generated from a state k at time n

• Π = [π1 π2 . . . πK ] an initial probability distribution over
states, i.e., πk is the probability that the Markov model will
start in state k.

However, in order to use the HMM framework for component
tracking, the typical HMM must be generalized to allow for a time-
varying transition matrix

(A)ij = aij → (A[n])ij = aij [n]. (1)

Our analysis using HMMs will require the computation of three
quantities

1. αn[k], the probability of ending up at state qk at time n, given
observations [o1 o2 · · · on]

2. βn[k], the probability of the observations [on+1 on+2 · · · oN ],
given that we are in state qk at time n

3. q?n, the most likely state at time n

Fortunately there exist well-known and efficient algorithms for com-
puting these quantities. More specifically, αn[k], βn[k], and q?n may
be respectively computed using the forward, backward, and Viterbi
algorithms. The pseudocode for the forward, backward, and Viterbi
algorithms generalized for a time-varying transition matrix are given
in Algorithms 4-6.

Algorithm 4 Forward Algorithm
1: procedure αn[k] = forward( A, B, Π )
2: initialize: α1[k] = πkbk(o1), 1 ≤ k ≤ K
3: for n = 2, 3, · · · , N do
4: for k ∈ {1, 2, · · · ,K} do
5: αn[k] =

∑K
i=1 αn−1[i]aik[n]bk(on)

6: end for
7: end for
8: end procedure

Algorithm 5 Backward Algorithm
1: procedure βn[k] = backward( A, B, Π )
2: initialize: βN [k] = 1, 1 ≤ k ≤ K
3: for n = N − 1, N − 2, · · · , 1 do
4: for k ∈ {1, 2, · · · ,K} do
5: βn[k] =

∑K
j=1 akj [n]bj(on+1)βn+1[j]

6: end for
7: end for
8: end procedure

4. PROPOSED TRACKING

At the conclusion of Algorithm 1 we have a set of K IMFs each
with IA âk(t) and IF ω̂k(t) parameters. As described in Section
2.1, EMD can suffer from mode mixing as well as component

Algorithm 6 Viterbi Algorithm
1: procedure [q?n, v

?] = Viterbi( A, B, Π )
2: initialize: v1[k] = πkbk(o1), 1 ≤ k ≤ K
3: initialize: p1[k] = 0, 1 ≤ k ≤ K
4: for n = 2, 3, · · · , N do
5: for k ∈ {1, 2, · · · ,K} do
6: vn[k] = max

i
vn−1[i]aik[n]bk(on)

7: pn[k] = argmax
i

vn−1[i]aik[n]bk(on)

8: end for
9: end for

10: v? = max
i
vN [i]

11: q?N = argmax
i

vN [i]

12: for n = N − 1, N − 2, · · · , 2 do
13: q?n = pn[q?n+1]
14: end for
15: end procedure

splitting. Suppose, we wish to isolate and track the dominant com-
ponent across a set of IMFs in the presence of mode mixing and/or
component splitting. Trivially, one could assume: 1) the dominant
component is captured in the IMF with the highest total energy
arg max

∫
|ak(t)|2 dt ∀ t or 2) the dominant component is sim-

ply the component associated with the IMF with the largest ak,
i.e. arg max ak(t) at every time instant. In the first case, the result-
ing dominant component estimate is smooth in frequency, while in
the latter it may jump sporadically in frequency. On the other hand,
the tracking for the second case would account for the maximum
amount of energy possible.

Next, we propose an alternate approach which uses an HMM
framework and allows for a compromise between the smoothness
and energy capture of the component tracking. In order to encour-
age smoothness in the tracking, a time-varying transition matrix is
constructed by considering how close the components are spaced to
one another in frequency (IF) at subsequent instants in time as

aij [n] =
|ω̂i(nTs)− ω̂j([n+ 1]Ts)|−1∑K

k=1 |ω̂i(nTs)− ω̂k([n+ 1]Ts)|−1
. (2)

In order to encourage high energy in the tracking we build the obser-
vation likelihoods using the IAs of the components as

bk(on) = exp(|âk(nTs)|) (3)

and assume equally likely initial states

πk =
1

K
. (4)

Using the above, the forward and backward variables αn[k] and
βn[k] are computed and by Bayes’ rule, the likelihood of a particular
state at an instant in time is used as the observation likelihood

bk(on) = αn[k]βn[k]. (5)

Finally, the Viterbi algorithm is used to determine the most likely
sequence of states, i.e. the index of the dominant component at each
instant in time. The pseudocode for dominant component tracking
(DomComp) is given in Algorithm 7 and called after Algorithm 1.

5. EXAMPLES AND RESULTS

We choose to demonstrate the proposed dominant component track-
ing using a recording of a parakeet call which was made using a



Algorithm 7 Dominant Component Algorithm
1: procedure {a?[n], ω?[n]} = DomComp( {âk(t), ω̂k(t)} )

2: aij [n]← |ω̂i(nTs)−ω̂j([n+1]Ts)|−1∑K
k=1
|ω̂i(nTs)−ω̂k([n+1]Ts)|−1

3: bk(on)← exp(|âk(nTs)|)
4: πk ← 1

K
5: αn[k] = forward( A, B, Π )
6: βn[k] = backward( A, B, Π )
7: βn[k]← αn[k]βn[k]
8: [q?n, v

?] = Viterbi( A, B, Π )
9: a?[n] = aq?n(nTs)

10: ω?[n] = ωq?n
(nTs)

11: end procedure

wireless “backpack” microphone positioned close to the bird’s head.
Recently, researchers have begun studying individual-level calling
behaviour of animals that are behaving freely in social groups using
wireless systems that consist of a microphone mounted in a wearable
backpack and a receiver station [13–15]. These light-weight back-
pack systems typically consist of a small microphone, analog-to-
digital converter, amplifier, microcontroller, FM transmitting chip,
and battery.

The acoustic recording has sampling rate fs = 48 kHz and was
taken in a noisy social environment where much of the noise con-
sisted of calls from other birds in environment. Therefore the target
call is overlapped with noise in both time and frequency, however,
the target call will typically have a greater amplitude than the noise
due to the close proximity to the microphone. A short-time Fourier
transform (STFT) for the recording is shown in Fig. 2(a) where we
used a Hamming window of length L = 256 samples and a window
advance of 4 samples. We use Algorithm 1 with masking signal

v(i,k)(t) = β sin

[
ck

2
t+ ν

]
(6)

and β = 3, c = 0.75, ε1 = −120 dB, ε2 = 5 dB, and I = 3 tri-
als. A time-frequency plot of the IA/IF parameters from the resulting
eight components are shown in Fig. 2(b). We then apply Algorithm
7 to the IA/IF parameters to obtain an estimate of the dominant com-
ponent shown in Fig. 2(c). This figure illustrates a single component
which appears to trace out a smooth path of high energy. For exam-
ple, in Fig. 2(b) near t = 0.07 we see one component spread across
two IMFs with relatively large IA and in Fig. 2(c) the component
has been properly tracked across IMFs. Similarly, in Fig. 2(b) near
t = 0.22 we see one component spread across three IMFs and in
Fig. 2(c) the component has been properly tracked across all three
IMFs. For comparison, we show in Figs. 2(d) and (e) the results of
the two trivial methods for dominant component tracking previously
described in Section 4. In the former, we have selected the IMF
based on highest total energy and in the latter, we have taken a path
which used the maximum IA at every instant in time.

6. CONCLUSION

In this paper, we carefully described and considered the problem of
component splitting in EMD. We proposed to use a HMM-based al-
gorithm to track the dominant component across a set of IMFs. The
transition probabilities are time-varying and based on how close the
components are spaced in frequency. The observation likelihoods
are based on the amplitudes of the components. We demonstrated
the method using an acoustic recording where component splitting
was present in the decomposition. We compared against two alter-
nate methods (one where an IMF was selected based on highest total

(a)

(b)

(c)

(d)

(e)

Fig. 2. Recording of a parakeet call and results from (a) STFT , (b)
decomposition and demodulation (Algorithm 1), (c) proposed algo-
rithm (Algorithm 7), (d) IMF with the greatest total energy, and (e)
IMF at each time instant with the maximum instantaneous ampli-
tude.

energy and another based on selecting the path which maximizes the
IA at every instant in time) and showed that the proposed method led
to a dominant component track which yields a compromise between
smoothness and energy associated with the track.
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